D

B R E KE Rm THE LEADER IN PORTABLE STIMULUS

SoC Verification and the
Synthesizable VerificationOS

DVCon 2021 Workshop

CON
unireo sTares

Synthesizable VerificationOS DVCon21 Workshop $

e High attendance workshop from DVCon, February 2021
SoC Verification and the Synthesizable VerificationOS

https://brekersystems.com/soc-verification-and-the-

synthesizable-verificationos-workshop/

e Presenters

o Introduction & Problem Discussion
Mike Chin, Principal Engineer, Intel

o Technology Overview & Practical Use Models
Adnan Hamid, CTO, Breker Verification systems

e Only Overview provided here (in 15 mins)

© Breker Verification Systems, Inc. All rights reserved. .

Breker Systems Confidential

BREKER"

2021

DESIGN AND VERIFICATION™

DVIOCOIN

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

https://brekersystems.com/soc-verification-and-the-synthesizable-verificationos-workshop/

Evolving SoC Verification

e Functional verification often focused at the IP level

e SoC:interconnected, well-defined IP blocks
o Could be re-verified using real data and software
o Evolved from “ASIC on board” approach

However...

e Modern SoC complexity requires more verification

o Infrastructure complexity: _
interconnect, coherency, security, etc.

o Functionality across multiple blocks & SW
o Concurrent profiling using same resources
o Parallel firmware development

e SoC improvements could also drive other process phases
e SoC Verification requires a new look

© Breker Verification Systems, Inc. All rights reserved.

&>

BREKER"

SoC

Testbench

CPUO CPU1 Memory
¢ ¢)
| Fabric | | System
A and
| Fabric jj Power
‘ ‘ ’ Control
DMAC AES UARTO| [UART1
A\ 4 A\ 4
Lwie | | vip |

Introduction by Mike Chin, Principal Engineer, Intel $

BREKER"

Summarizing Mike’s SoC Verification Issues

e Driving factor: Shifting test content from IP through SoC to Post-Silicon

e Industry Challenges
o Time-to-market and the resulting competitive edge
o High quality equating to validation completeness
o TTM plus quality equals leadership

e Specific verification challenges
o Scaling from IP verification through SoC
o Scaling across verification platforms and OSs, including bare metal
o High-coverage IP validation on its own and part of an SoC, post silicon validation
o Talking the same language — especially with third party companies
o Simplifying problems such as power management

e Synthesizable VerificationOS

© Breker Verification Systems, Inc. All rights reserved.

Synthesizable VerificationOS $

Shift-Left, Reuse, Repetition Elimination, Test Plan Focus BREKER

System Model e

Compose %:g(E(e Shift Left

(Test Content)
Synthesizable VerificationOS
~

i ____SWoDrivers ___"|

Virtual Platform UVM Block Simulation Hybrid Emulation Silicon / Prototyping
Environment Environment Acceleration Environment Environment

© Breker Verification Systems, Inc. All rights reserved.

Analogies Across Software and Verification Environments BRQERW

Verification Software Development
_________________________________ | R] ————— e
UVM Simulation : | Sim/Emulation : ' PCI-Express : Linux
uvm_info() ? ? printf()
uvm_sequence() ? ? Processes
? ? ? malloc()
o
Unit-bench SoC Environment Silicon SW Development

© Breker Verification Systems, Inc. All rights reserved.

Synthesizable VerificationOS™ Overview $

BREKER"

Verification-specific, lightweight OS C/C++ UVM -

h 4 h 4

kernel integrated with test content

Test & Resource Scheduling
e Scheduling tests and resources 4

e Test synchronization & data - - -
. CPUO CPU1 Memory
execution management

e Multi-lingual/methodology support

e Necessary verification services

Synthesizable
VerificationOS

Testbench

© Breker Verification Systems, Inc. All rights reserved.

Virtualized OS Services

e Porta
e Porta
e Porta
e Porta
e Porta
e Porta

e Messages

e Registers

e Memory Scheduler

e Task Scheduler

e Transactions

e Interrupt Management

© Breker Verification Systems, Inc. All rights reserved.

Messages

Scheduling

API

Memory
Transactions

Synthesized Realization

Registers

Interrupts

&

BREKER"

component pss_top {
action my_op {
rand addr_claim_s<> claim;
constraint claim.size == 20;

}s
contiguous_addr_space_c<> mem;

exec init {
addr_region_s<> regionl, region2;
regionl.size = 50;
mem.add_region(regionl);
region2.size = 10;
mem.add_region(region2);

}s

regionl
A

region2

A

PSS Memory Allocation & Consistency

&

BREKER"

OK — allocations can be

action testl {
activity {
repeat (3) {
do my_op;
}

recycled across
sequential claims

}
}s

action test2 {

Allocation error! — cannot
satisfy concurrent claims

activity {
parallel {
replicate

do my _op;

}
}

}
}s

(3) {

© Breker Verification Systems, Inc. All rights reserved.

Courtesy: PSS Tutorial DVCon 2021

Portable Registers in Native C++

Ipxact register definitions

<spirit:register>
<spirit:
<spirit:
<spirit:
<spirit:
<spirit:
<spirit:

name>
addressOffset>
size>

access>
description>
reset>

<spirit:value>
</spirit:reset>

<spirit:

field>

<spirit:name>
<spirit:bitOffset>
<spirit:bitWidth>
<spirit:access>
<spirit:description>
<spirit:values>

// Modeled after UVM registers

UART_LCR

0x00000003

8

read-write

Line Control Register

0x03

CHAR_SIZE

0

2

read-write

Number of bits in each char

</spirit:
</spirit:
</spirit:
</spirit:
</spirit:

</spirit:

</spirit:
</spirit:
</spirit:
</spirit:
</spirit:

blk->regA.fieldF.set(3);
blk->regA.write();

© Breker Verification Systems, Inc. All rights reserved.

name>
addressOffset>
size>

access>
description>

value>

name>
bitOffset>
bitwWidth>
access>
description>

generate

&

BREKER"

Portable register definitions

class reg_ALL_REGISTERS_MMAP__ UART_LCR :

public:

public reg {

reg_ALL_REGISTERS_MMAP__ UART_LCR(const scope& s) : reg(this,8) {};

reg_field
reg_field
reg_field
reg_field
reg_field
reg_field
reg_field

3

class ALL_REGISTERS_MMAP_reg block :

public:

CHAR_SIZE { "CHAR_SIZE", 2, ©, "RW", ©, 0, 1, 0, 1 };

STOP_BITS { "STOP_BITS", 1, 2, "RW", @, 0, 1, 0, 1 };
PARITY_ENABLE { "PARITY_ENABLE", 1, 3, "RW", ©, 0, 1, 0, 1 };
PARITY_EVEN { "PARITY_EVEN", 1, 4, "RW", @, @, 1, 0, 1 };
PARITY_STICK { "PARITY_STICK", 1, 5, "RW", @, @, 1, 0, 1 };
BREAK_CONTROL { "BREAK_CONTROL", 1, 6, "RW", ©, 0, 1, 0, 1 };
DIVISOR_ACCESS { "DIVISOR_ACCESS", 1, 7, "RW", ©, ©, 1, 0, 1 };

public reg block {

ALL_REGISTERS_MMAP_reg_block(..) {

ALL_REGISTERS_MMAP.add_reg (_UART_LCR, ©x00000083);

}
3

Task & Resource Scheduling

Testbench

Block 2

© Breker Verification Systems, Inc. All rights reserved.

test.c

Block 2

Block 1

]
Block 1

Block 2

test_cpul.c test_cpu2.c test_cpu3.c

Block 2

Block 1

Block 1

-+-7

Block 1

Block 1

Memory
Region 1

Data segment 1

BREKER"

Memory
Region 2

Data segment 2

Memory
Region 3

——— ¥ .}

|
Py Processed data 2

Execution Management

e Multi-threaded test execution

e SW test to I/O transactions
synchronization

e Scenario-aware debug
e Coverage driven
e Trickboxing / memory access

© Breker Verification Systems, Inc. All rights reserved.

Multi-threaded
Tests in SW

VA

v || coun

Synchronization

Testbench - -

Multi-threaded
Transactions

&

BREKER"

Debug, Profiling

Synthesizable VerificationOS for SoC Integration Validation

SoC and headless sub-system automated,
high-coverage integration verification

e Enable reuse, including pre-packaged configurable
scenario “apps”, porting from UVM and to Post Silicon

e Efficient, high-throughput SoC automated verification
for emulation performance, optimized test services

e High coverage, corner-case scenario testing, with SoC
specialized debug and profiling

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential

TrekApﬁps

ER T

TrekDesigner

=

6-:"
+am

-

—

Test Suite

Synthesis
(Planning Algorithms)

SD Controller Model

Synthesizable

VerificationOS
(Planning Algorithms)

L, : v

&

BREKER"

Accellera PSS

Native C++

\ CSW +TLM

Debug & Profiling

Testbench

FW
Memory Photo
Processor
b

FW

Display SD Card

Camera
Controller Controller

Camera

FW

FW
PhOto
I Processor
b

Display SD Card
Controller Controller

[vip] [vip] [vie]

Testbench

Firmware Verification $
BREKER"

e The VerificationOS provides lightweight firmware
execution Services Camera Firmware PhotoP Firmware

e The VerificationOS allows firmware to execute on

subsystems and blocks with or without the processor . “Light” VerificationOS Layer

Memory Interrupt
I Allocation j Processing

e Firmware and the testbench may be combined for a
full SoC test on any platform

UVM Testbench

10 Transactions

e e e o o o=

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential 14

UVM++ Putting the UVM Engineer In Charge $

BREKER"
Test content sequence synthesizer]
° ° =_ UVM++ Model T
for existing UVM testbenches - P« =
i TrekApps -: C_ S TrekDesigner
)) Cover Reachability Analysis UVM++
e Enables UVM reuse to emulation and prototyping , ,
£ Test Suite _ Test
o Layer between portable sequences and standard UVM ' Synthesis Content
e Pre-execution coverage selection and closure
e High-throughput use model, built on UVM synthesizable =
o Random emulation without simulator for accelerated test verification0s T
(Verdi integration)
UVM Sequences
v 3 v UVM
UVM Testbench "Testbench
- [Fabric _]
camera || Sintr i DS
UVM Testbench @
= = 1 [ve] [we]
=

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential

15

UVM IP Testbench Mechanics

UVM sequence detail to interface w/ VIPs

class trek_apb_master_seq extends uvm_sequence #(apb_pkg: :apb_transfer);

“uvm_object_utils(trek_apb_master_seq)

virtual task body();
forever begin
req.get(m_tb_path, trek_done);
if (trek_done) break;
“uvm_send(req)
if (req.direction == APB_READ) begin
rsp.send(m_tb_path);
end
req.item_done(m_tb_path);
end
endtask

endclass

© Breker Verification Systems, Inc. All rights reserved.

test.tbx

Execution
Engine

&

BREKER"
UVM environment
DPI LIB := ${BREKER_HOME2}/build/lib/libtrek.so
INCDIR += ${BREKER_HOME2}/target/sv

VLOGSRC +=
${BREKER_HOME2}/target/sv/trek_uvm.sv
SIM OPTION += +TREK_TBX FILE="${TBX FILE}"

\ 4

APB VIP
A
UART
RTL
UARTO
v
UART VIP
A
UVM Testbench

ICE / FPGA Prototype / Post-Silicon Diagnostics 6

BREKER"

Trekox Run Thiead

B
]

!

ji @ 4 § AT e » i 6]
TR T TR o
11!

b

L IR TS

(< L\'_tu

Zer Grrex_mem DOR1I0X00000004

© Breker Verification Systems, Inc. All rights reserved.

Summary 45

BREKER"

e Evolving SoC verification

e Evolving SoC verification requirements
Mike Chin, Principal Software Engineer, Intel

Synthesizable
VerificationOS

Execution Management
.

e Driving practical SoC verification e
. o« o . CPUO CPU1 Memor
Adnan Hamid, CTO, Breker Verification Systems e " .
o o . . / [Fabric] Pz\r:vder
e SoC verification requirements and the B
. o fro o DMAC AES UARTO| |UART1
Synthesizable VerificationOS s
Testbench

https://brekersystems.com/soc-verification-and-the-synthesizable-verificationos-workshop/

© Breker Verification Systems, Inc. All rights reserved.

https://brekersystems.com/soc-verification-and-the-synthesizable-verificationos-workshop/

Thanks for Listening!
For further info: info@brekersystems.com

www.brekersystems.com

