
The Leader in Portable Stimulus

SoC Verification and the
Synthesizable VerificationOS

DVCon 2021 Workshop

Synthesizable VerificationOS DVCon21 Workshop

l High attendance workshop from DVCon, February 2021
SoC Verification and the Synthesizable VerificationOS

https://brekersystems.com/soc-verification-and-the-
synthesizable-verificationos-workshop/

l Presenters
o Introduction & Problem Discussion

Mike Chin, Principal Engineer, Intel
o Technology Overview & Practical Use Models

Adnan Hamid, CTO, Breker Verification systems

l Only Overview provided here (in 15 mins)

© Breker Verification Systems, Inc. All rights reserved. . Breker Systems Confidential 2

https://brekersystems.com/soc-verification-and-the-synthesizable-verificationos-workshop/

Evolving SoC Verification

l Functional verification often focused at the IP level
l SoC: interconnected, well-defined IP blocks

o Could be re-verified using real data and software
o Evolved from “ASIC on board” approach

However…
l Modern SoC complexity requires more verification

o Infrastructure complexity:
interconnect, coherency, security, etc.

o Functionality across multiple blocks & SW
o Concurrent profiling using same resources
o Parallel firmware development

l SoC improvements could also drive other process phases
l SoC Verification requires a new look

Testbench

SoC

CPU0 MemoryCPU1

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

© Breker Verification Systems, Inc. All rights reserved.

Introduction by Mike Chin, Principal Engineer, Intel

l Driving factor: Shifting test content from IP through SoC to Post-Silicon
l Industry Challenges

o Time-to-market and the resulting competitive edge
o High quality equating to validation completeness
o TTM plus quality equals leadership

l Specific verification challenges
o Scaling from IP verification through SoC
o Scaling across verification platforms and OSs, including bare metal
o High-coverage IP validation on its own and part of an SoC, post silicon validation
o Talking the same language – especially with third party companies
o Simplifying problems such as power management

l Synthesizable VerificationOS

© Breker Verification Systems, Inc. All rights reserved.

Summarizing Mike’s SoC Verification Issues

Synthesizable VerificationOS
Shift-Left, Reuse, Repetition Elimination, Test Plan Focus

SoC
Memory

DMAC AES

Fabric
Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

CPUCPU
SoC

Memory

DMAC AES

Fabric
Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

CPUCPU

Virtual Platform
Environment

Hybrid Emulation
Environment

Silicon / Prototyping
Environment

UVM Block
Environment

SoC
RTL

Memory

DMAC AES

Fabric
Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

VIP VIP

UART0

VIP

AES

Full OSSW Drivers

SD
Sys

DC
PP

CamSystem Model

SD

IP
Model Compose

Synthesizable VerificationOS
Test Content

Shift Left

SW Drivers

Simulation
Acceleration

Architecture Block Sub-System SoC System Post-Silicon

© Breker Verification Systems, Inc. All rights reserved.

Analogies Across Software and Verification Environments

UART0

VIP

AES

Unit-bench

UVM Simulation

Block tests

uvm_info()
uvm_sequence()
?

SoC
Memory

DMAC AES

Fabric
Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

CPUCPU

Linux

SW Development

Software

Software Development

printf()
Processes
malloc()

SoC
Memory

DMAC AES

Fabric
Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

CPUCPU

SoC Environment

System tests

Sim/Emulation

?
?
?

PCI-Express

Silicon

Diagnostics

?
?
?

Verification

© Breker Verification Systems, Inc. All rights reserved.

Synthesizable VerificationOS™ Overview

l Necessary verification services
l Scheduling tests and resources
l Test synchronization & data

execution management
l Multi-lingual/methodology support

Testbench

SoC

CPU0 MemoryCPU1

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

Execution Management

Test & Resource Scheduling

Virtualized OS Services

PSS C/C++ UVM FW

Sy
nt

he
siz

ab
le

Ve

rif
ic

at
io

nO
SVerification-specific, lightweight OS

kernel integrated with test content

© Breker Verification Systems, Inc. All rights reserved.

Virtualized OS Services

l Portable Messages
l Portable Registers
l Portable Memory Scheduler
l Portable Task Scheduler
l Portable Transactions
l Portable Interrupt Management

Virtualized OS Services

Messages Memory Registers

Scheduling Transactions Interrupts

API

Synthesized Realization

© Breker Verification Systems, Inc. All rights reserved.

PSS Memory Allocation & Consistency

component pss_top {
action my_op {

rand addr_claim_s<> claim;
constraint claim.size == 20;

};

contiguous_addr_space_c<> mem;

exec init {
addr_region_s<> region1, region2;
region1.size = 50;
mem.add_region(region1);
region2.size = 10;
mem.add_region(region2);

}
};

action test1 {
activity {

repeat (3) {
do my_op;

}
}

};

action test2 {
activity {

parallel {
replicate (3) {

do my_op;
}

}
}

};

OK – allocations can be
recycled across
sequential claims

Allocation error! – cannot
satisfy concurrent claims

my_opmy_op my_op

my_op

my_op

my_op

region1 region2

Courtesy: PSS Tutorial DVCon 2021

© Breker Verification Systems, Inc. All rights reserved.

Portable Registers in Native C++

// Modeled after UVM registers
blk->regA.fieldF.set(3);
blk->regA.write();

<spirit:register>
<spirit:name> UART_LCR </spirit:name>
<spirit:addressOffset> 0x00000003 </spirit:addressOffset>
<spirit:size> 8 </spirit:size>
<spirit:access> read-write </spirit:access>
<spirit:description> Line Control Register </spirit:description>
<spirit:reset>
<spirit:value> 0x03 </spirit:value>

</spirit:reset>

<spirit:field>
<spirit:name> CHAR_SIZE </spirit:name>
<spirit:bitOffset> 0 </spirit:bitOffset>
<spirit:bitWidth> 2 </spirit:bitWidth>
<spirit:access> read-write </spirit:access>
<spirit:description> Number of bits in each char </spirit:description>

<spirit:values>

Ipxact register definitions
class reg_ALL_REGISTERS_MMAP__UART_LCR : public reg {
public:
reg_ALL_REGISTERS_MMAP__UART_LCR(const scope& s) : reg(this,8) {};
reg_field CHAR_SIZE { "CHAR_SIZE", 2, 0, "RW", 0, 0, 1, 0, 1 };
reg_field STOP_BITS { "STOP_BITS", 1, 2, "RW", 0, 0, 1, 0, 1 };
reg_field PARITY_ENABLE { "PARITY_ENABLE", 1, 3, "RW", 0, 0, 1, 0, 1 };
reg_field PARITY_EVEN { "PARITY_EVEN", 1, 4, "RW", 0, 0, 1, 0, 1 };
reg_field PARITY_STICK { "PARITY_STICK", 1, 5, "RW", 0, 0, 1, 0, 1 };
reg_field BREAK_CONTROL { "BREAK_CONTROL", 1, 6, "RW", 0, 0, 1, 0, 1 };
reg_field DIVISOR_ACCESS { "DIVISOR_ACCESS", 1, 7, "RW", 0, 0, 1, 0, 1 };

};

class ALL_REGISTERS_MMAP_reg_block : public reg_block {
public:
ALL_REGISTERS_MMAP_reg_block(…) {
…
ALL_REGISTERS_MMAP.add_reg (_UART_LCR, 0x00000003);

}
};

Portable register definitions

generate

© Breker Verification Systems, Inc. All rights reserved.

Task & Resource Scheduling

test_cpu1.c test_cpu2.c test_cpu3.c

I/O 1

Block 1

Block 2

Block 1

I/O 2

Block 2

Block 1

I/O 2

I/O 1

I/O 1

Block 2

Block 1

test.c

I/O 1 Block 1 VIP

VIPVIP

Block 2

I/O 2Block 1

VIP

Block 2

Memory
Region 1

Memory
Region 2

Memory
Region 3

Raw Image #1

Data segment 1

Block 1

!/O 2

Block 2

Processed data 2

Data segment 2

Block 1

Block 1

Block 1

Testbench

SoC
CPU0 MemoryCPU1

Block 1 Block 2

Fabric

Fabric

I/O 2

VIP

System
and

Power
Control

I/O 1

VIP

© Breker Verification Systems, Inc. All rights reserved.

Execution Management

l Multi-threaded test execution
l SW test to I/O transactions

synchronization
l Scenario-aware debug
l Coverage driven
l Trickboxing / memory access

Testbench

SoC

CPU0 MemoryCPU1

Block 1 Block 2

Fabric

Fabric

I/O

VIP

System
and

Power
Control

I/O

VIP

Multi-threaded
Tests in SW

Multi-threaded
Transactions

Sy
nc

hr
on

iza
tio

n

Coverage

Debug, Profiling

© Breker Verification Systems, Inc. All rights reserved.

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential

Synthesizable VerificationOS for SoC Integration Validation

l Enable reuse, including pre-packaged configurable
scenario ”apps”, porting from UVM and to Post Silicon

l Efficient, high-throughput SoC automated verification
for emulation performance, optimized test services

l High coverage, corner-case scenario testing, with SoC
specialized debug and profiling

13

SoC and headless sub-system automated,
high-coverage integration verification

Stimulus

Debug & Profiling

Coverage Constraint

Synthesizable
VerificationOS

(Planning Algorithms)

Test Suite
Synthesis

(Planning Algorithms)

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

SD Controller Model

TrekApps

TrekDesigner

Accellera PSS

Native C++

Checks Coverage Debug

C SW + TLM

Reachability Analysis

Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP FW FW FWFW

Firmware Verification

l The VerificationOS provides lightweight firmware
execution services

l The VerificationOS allows firmware to execute on
subsystems and blocks with or without the processor

l Firmware and the testbench may be combined for a
full SoC test on any platform

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential 14

UVM Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP

Camera Firmware PhotoP Firmware

“Light” VerificationOS Layer
Memory
Allocation

Interrupt
Processing

IO
 T

ra
ns

ac
tio

ns

Register
R/W

UVM++ Putting the UVM Engineer In Charge

l Enables UVM reuse to emulation and prototyping
o Layer between portable sequences and standard UVM

l Pre-execution coverage selection and closure

l High-throughput use model, built on UVM
o Random emulation without simulator for accelerated test

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential 15

Test content sequence synthesizer
for existing UVM testbenches

UVM++
Test
Content

UVM
Testbench

Stimulus

Debug & Profiling
(Verdi integration)

Coverage Constraint

Synthesizable
VerificationOS

Test Suite
Synthesis

UVM Testbench

SD Int. VIP

APB VIP

SD Card
Controller

UVM++ Model

TrekApps TrekDesigner

Scoreboard Coverage Debug

UVM Sequences

Reachability Analysis

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP UVM Testbench

UVM IP Testbench Mechanics

UART
Model

Execution
Engine

test.tbx

UVM Testbench

UART
RTL

UART0

UART VIP

APB VIP

class trek_apb_master_seq extends uvm_sequence #(apb_pkg::apb_transfer);
`uvm_object_utils(trek_apb_master_seq)

virtual task body();
forever begin
req.get(m_tb_path, trek_done);
if (trek_done) break;
`uvm_send(req)
if (req.direction == APB_READ) begin
rsp.send(m_tb_path);

end
req.item_done(m_tb_path);

end
endtask

endclass

UVM sequence detail to interface w/ VIPs
DPI_LIB := ${BREKER_HOME2}/build/lib/libtrek.so
INCDIR += ${BREKER_HOME2}/target/sv
VLOGSRC +=
${BREKER_HOME2}/target/sv/trek_uvm.sv
SIM_OPTION += +TREK_TBX_FILE="${TBX_FILE}"

UVM environment
Synthesis

© Breker Verification Systems, Inc. All rights reserved.

ICE / FPGA Prototype / Post-Silicon Diagnostics

© Breker Verification Systems, Inc. All rights reserved.

Summary

l Evolving SoC verification
l Evolving SoC verification requirements

Mike Chin, Principal Software Engineer, Intel
l Driving practical SoC verification

Adnan Hamid, CTO, Breker Verification Systems
l SoC verification requirements and the

Synthesizable VerificationOS

© Breker Verification Systems, Inc. All rights reserved.

Testbench

SoC
CPU0 MemoryCPU1

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

Execution Management
Test & Resource Scheduling

Virtualized OS Services

PSS C/C++ UVM Other

Sy
nt

he
siz

ab
le

Ve

rif
ic

at
io

nO
S

https://brekersystems.com/soc-verification-and-the-synthesizable-verificationos-workshop/

https://brekersystems.com/soc-verification-and-the-synthesizable-verificationos-workshop/

Thanks for Listening!
For further info: info@brekersystems.com

www.brekersystems.com

