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Synthesizable VerificationOS DVCon21 Workshop 

l High attendance workshop from DVCon, February 2021
SoC Verification and the Synthesizable VerificationOS

https://brekersystems.com/soc-verification-and-the-
synthesizable-verificationos-workshop/

l Presenters
o Introduction & Problem Discussion

Mike Chin, Principal Engineer, Intel
o Technology Overview & Practical Use Models

Adnan Hamid, CTO, Breker Verification systems

l Only Overview provided here (in 15 mins)
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Evolving SoC Verification

l Functional verification often focused at the IP level
l SoC: interconnected, well-defined IP blocks

o Could be re-verified using real data and software
o Evolved from “ASIC on board” approach

However…
l Modern SoC complexity requires more verification

o Infrastructure complexity: 
interconnect, coherency, security, etc.

o Functionality across multiple blocks & SW
o Concurrent profiling using same resources
o Parallel firmware development

l SoC improvements could also drive other process phases
l SoC Verification requires a new look
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Introduction by Mike Chin, Principal Engineer, Intel

l Driving factor: Shifting test content from IP through SoC to Post-Silicon
l Industry Challenges

o Time-to-market and the resulting competitive edge
o High quality equating to validation completeness
o TTM plus quality equals leadership

l Specific verification challenges
o Scaling from IP verification through SoC 
o Scaling across verification platforms and OSs, including bare metal
o High-coverage IP validation on its own and part of an SoC, post silicon validation
o Talking the same language – especially with third party companies
o Simplifying problems such as power management

l Synthesizable VerificationOS
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Summarizing Mike’s SoC Verification Issues



Synthesizable VerificationOS
Shift-Left, Reuse, Repetition Elimination, Test Plan Focus
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Analogies Across Software and Verification Environments
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Synthesizable VerificationOS™ Overview

l Necessary verification services
l Scheduling tests and resources
l Test synchronization & data 

execution management
l Multi-lingual/methodology support
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Virtualized OS Services

l Portable Messages
l Portable Registers
l Portable Memory Scheduler
l Portable Task Scheduler
l Portable Transactions
l Portable Interrupt Management

Virtualized OS Services

Messages Memory Registers

Scheduling Transactions Interrupts

API

Synthesized Realization
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PSS Memory Allocation & Consistency

component pss_top {
action my_op {

rand addr_claim_s<> claim;
constraint claim.size == 20;

};

contiguous_addr_space_c<> mem;

exec init {
addr_region_s<> region1, region2;
region1.size = 50;
mem.add_region(region1);
region2.size = 10;
mem.add_region(region2);

}
};

action test1 {
activity {

repeat (3) {
do my_op;

}
}

};

action test2 {
activity {

parallel {
replicate (3) {

do my_op;
}

}
}

};

OK – allocations can be 
recycled across 
sequential claims

Allocation error! – cannot 
satisfy concurrent claims
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Courtesy: PSS Tutorial DVCon 2021
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Portable Registers in Native C++

// Modeled after UVM registers
blk->regA.fieldF.set(3);
blk->regA.write();

<spirit:register>
<spirit:name>           UART_LCR                             </spirit:name>
<spirit:addressOffset>  0x00000003                           </spirit:addressOffset>
<spirit:size>           8                                    </spirit:size>
<spirit:access>         read-write                           </spirit:access>
<spirit:description>    Line Control Register                </spirit:description>
<spirit:reset>
<spirit:value>        0x03                                 </spirit:value>

</spirit:reset>

<spirit:field>
<spirit:name>         CHAR_SIZE                            </spirit:name>
<spirit:bitOffset>    0                                    </spirit:bitOffset>
<spirit:bitWidth>     2                                    </spirit:bitWidth>
<spirit:access>       read-write                           </spirit:access>
<spirit:description>  Number of bits in each char          </spirit:description>

<spirit:values> 

Ipxact register definitions
class reg_ALL_REGISTERS_MMAP__UART_LCR : public reg {
public:
reg_ALL_REGISTERS_MMAP__UART_LCR(const scope& s) : reg(this,8) {};
reg_field CHAR_SIZE { "CHAR_SIZE", 2, 0, "RW", 0, 0, 1, 0, 1 };
reg_field STOP_BITS { "STOP_BITS", 1, 2, "RW", 0, 0, 1, 0, 1 };
reg_field PARITY_ENABLE { "PARITY_ENABLE", 1, 3, "RW", 0, 0, 1, 0, 1 };
reg_field PARITY_EVEN { "PARITY_EVEN", 1, 4, "RW", 0, 0, 1, 0, 1 };
reg_field PARITY_STICK { "PARITY_STICK", 1, 5, "RW", 0, 0, 1, 0, 1 };
reg_field BREAK_CONTROL { "BREAK_CONTROL", 1, 6, "RW", 0, 0, 1, 0, 1 };
reg_field DIVISOR_ACCESS { "DIVISOR_ACCESS", 1, 7, "RW", 0, 0, 1, 0, 1 };

};

class ALL_REGISTERS_MMAP_reg_block : public reg_block {
public:
ALL_REGISTERS_MMAP_reg_block(… ) {
…
ALL_REGISTERS_MMAP.add_reg ( _UART_LCR, 0x00000003 );

}
};

Portable register definitions

generate
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Task & Resource Scheduling

test_cpu1.c test_cpu2.c test_cpu3.c

I/O 1

Block 1

Block 2

Block 1

I/O 2

Block 2

Block 1

I/O 2

I/O 1

I/O 1

Block 2

Block 1

test.c

I/O 1 Block 1 VIP

VIPVIP

Block 2

I/O 2Block 1

VIP

Block 2

Memory 
Region 1

Memory 
Region 2

Memory 
Region 3

Raw Image #1

Data segment 1

Block 1

!/O 2

Block 2

Processed data 2

Data segment 2

Block 1

Block 1

Block 1

Testbench

SoC
CPU0 MemoryCPU1

Block 1 Block 2

Fabric

Fabric

I/O 2

VIP

System
and

Power
Control

I/O 1

VIP

© Breker Verification Systems, Inc.  All rights reserved.



Execution Management

l Multi-threaded test execution
l SW test to I/O transactions 

synchronization
l Scenario-aware debug
l Coverage driven
l Trickboxing / memory access
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Synthesizable VerificationOS for SoC Integration Validation

l Enable reuse, including pre-packaged configurable 
scenario ”apps”, porting from UVM and to Post Silicon

l Efficient, high-throughput SoC automated verification 
for emulation performance, optimized test services

l High coverage, corner-case scenario testing, with SoC 
specialized debug and profiling

13

SoC and headless sub-system automated, 
high-coverage integration verification
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Firmware Verification

l The VerificationOS provides lightweight firmware 
execution services

l The VerificationOS allows firmware to execute on 
subsystems and blocks with or without the processor

l Firmware and the testbench may be combined for a 
full SoC test on any platform
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UVM Testbench
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UVM++ Putting the UVM Engineer In Charge

l Enables UVM reuse to emulation and prototyping
o Layer between portable sequences and standard UVM

l Pre-execution coverage selection and closure

l High-throughput use model, built on UVM
o Random emulation without simulator for accelerated test 
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Test content sequence synthesizer 
for existing UVM testbenches
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UVM IP Testbench Mechanics 
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class trek_apb_master_seq extends uvm_sequence #(apb_pkg::apb_transfer);
`uvm_object_utils(trek_apb_master_seq)

virtual task body();
forever begin
req.get(m_tb_path, trek_done);
if (trek_done) break;
`uvm_send( req )
if ( req.direction == APB_READ ) begin
rsp.send(m_tb_path);

end
req.item_done( m_tb_path );

end
endtask

endclass

UVM sequence detail to interface w/ VIPs 
DPI_LIB := ${BREKER_HOME2}/build/lib/libtrek.so
INCDIR += ${BREKER_HOME2}/target/sv
VLOGSRC += 
${BREKER_HOME2}/target/sv/trek_uvm.sv
SIM_OPTION += +TREK_TBX_FILE="${TBX_FILE}"

UVM environment 
Synthesis
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ICE / FPGA Prototype / Post-Silicon Diagnostics
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Summary

l Evolving SoC verification
l Evolving SoC verification requirements

Mike Chin, Principal Software Engineer, Intel
l Driving practical SoC verification

Adnan Hamid, CTO, Breker Verification Systems
l SoC verification requirements and the 

Synthesizable VerificationOS
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Thanks for Listening!
For further info: info@brekersystems.com

www.brekersystems.com


