

Nick Heaton, Distinguished Engineer 8th Feb 2022

cadence

Do New SoC Architectures Demand New Tools and Approaches?

Panel

- Nirmal Aramugam QCOM Mobile SoC Verification Lead
- Sukamar Raghuram Intel Server Verification Lead
- Pankaj Kakkar Cadence Systems and Verification Product Engineering

What Functional Challenges are you facing?

QCOM

- Cloud and Edge driving big data
 - Growing significance of AI engines
 - Workloads very unpredictable hence need for Traffic Modelling to simulate Video, Audio and more
 - Performance Validation with these synthetic workloads is key
- Camera demands in Mobile are significant
 - 3 cameras, with image stabilization
 - Augmented reality puts huge demands on data processing
- Coherency across all these compute engines
 - Big-LITTLE is accepted standard

Intel

- System-level distributed compute model is a good one, but demands rigorous verification
- Bare-bones coherency verification is significant
 - So many engines and interfaces sharing data
- Performance Validation is a huge challenge
 - Validating architectural performance on RTL models requires complex use-cases
- Power Management
 - Centralized power controllers, PHYs

What Resource Challenges are you facing?

- Given the growing complexity are the resources/timescales scaling proportionally?
 - Human Capital
 - Need to have a bug budget
 - Broader range of tools beyond simulation
 - Machine budget
 - Formal, HW Acceleration
 - Need lowest bring-up cost, and efficient usage across more than just simulation
 - Need partnership between IP and SoC verification teams
 - Need partnership between EDA and SoC developers
 - _o 3DIC
 - Will drive more resource demands
 - Seeing 2-4X compute resource growth per year (Nirmal)

New Approaches to Address the Challenges ? PSS

- QCOM very early adopters of Portable Stimulus Standard (PSS)
 - Mostly used for project-to-project reuse of SoC workloads
 - Not currently used for IP to SoC
 - Methodology is still in evolution stage

Intel

- SystemVerilog has had a huge impact on IP verification
- PSS will be similarly impactful
 - especially in constructing scenarios to reuse scenarios from architecture to RTL
- Broad adoption is the goal, still evolving across projects

Cadence

- Bringing in the test intent early as part of the modelling is key
 - Allows definition of SoC coverage to measure progress
 - Works across multiple platforms
- Portability across UVM to SW-driven testing is a big value

New Approaches to Address the Challenges ? HW Platforms

QCOM

- Security verification is a big challenge and requires HW-SW validation, needs to run on HW
- Always-on camera, needed for face recognition unlocking.
 - Validating correct function was extremely complex as multiple engines and SW needed, had to be done on HW Acceleration
- Hybrid (Compute Subsystem in TLM connected to HW) delivers the speed needed for certain use-cases.

Intel

- Hybrid models used extensively
 - Efficient both in capacity and performance

New Approaches to Address the Challenges ? *Machine Learning*

QCOM

- Regression management is a key area where ML can play a role
- Stimulus management also could be a useful area
- Failure analysis with ML is useful, in-house tools looking to EDA to commercialize
- Expert system for debug

Intel

- Verification is "tailor-made" for ML .. lots of in-house ML tools
- Regression optimization
- Debug smarter
- Using past projects to predict regression for next project
 - Regression prediction
 - Bug prediction
 - Coverage prediction
 - Which tests to run on GLS? Can ML help solve this tough problem?

New Approaches to Address the Challenges ? Formal

Intel

- Used formal for very specific SoC verification items
 - Bug classification can help reduce the amount of simulation needed
 - Get micro architecture guys bought in to using formal

QCOM

- Mostly use SEQ for late ECO checking
- Low Power connectivity using formal
- Power Domain validation against hierarchical CPF
- What happened to the dream of automating SoC assembly?
 - Was a vision about 10 years ago but hasn't been realized
 - This was confirmed, some companies looked into this but the complexities really haven't been solved.

Summary

- SoC Verification Challenges are Significant and growing
 - Coherency challenges are pervasive and complex
 - Performance Verification is increasing important and done at RTL
 - Low Power and Security all add to the challenge
- Resources are always limited and hence smart approaches and tools are essential
 - Verification Management becomes front and central to optimization utilization of resources
 - Cloud and On-Premises mixing
 - Using Machine Learning to harvest data during a project
 - Using Machine Learning to harvest data project to project
 - Creating complex SoC Scenarios with PSS is becoming mainstream
 - Use-case creation is needed for Coherency, Low Power, security and more
 - HW Acceleration is ubiquitous and critically important
 - Innovative use-models like Hybrid are improving ROI
 - Formal can be useful for very specific SoC challenges

cādence®

© 2022 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks or registered trademarks or farm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI specifications are registered trademarks or trademarks or trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks are the property of their respective owners.