
Pushkar Kumar
Application Engineer, Synopsys

October 2022

Faster TB Development with Automated Code 
Checks



© 2022 Synopsys, Inc. 2

CONFIDENTIAL INFORMATION
The information contained in this presentation is the confidential and proprietary 
information of Synopsys. You are not permitted to disseminate or use any of 
the information provided to you in this presentation outside of Synopsys 
without prior written authorization. 

IMPORTANT NOTICE
In the event information in this presentation reflects Synopsys’ future plans, such plans 
are as of the date of this presentation and are subject to change. Synopsys is not 
obligated to update this presentation or develop the products with the features and 
functionality discussed in this presentation. Additionally, Synopsys’ services and products 
may only be offered and purchased pursuant to an authorized quote and purchase order 
or a mutually agreed upon written contract with Synopsys.

Synopsys Confidential Information



© 2022 Synopsys, Inc. 3Synopsys Confidential Information

• Efficiency is crucial when working with SystemVerilog UVM Testbenches. Syntax mistakes, 
coding violations, and the resulting problems increase the daily stress of engineers.

• Every time an engineer submits a compile after coding a part of TB, it is extremely likely for the 
code to fail at compile or run time due to syntactical or structural errors – Needs iterative compile 
and simulation to fix. 

• That time is measurable

• Engineers would rather have the problems:

– in their editor

– annotated with exactly the right error message to fix

– be given quick feedback if their fix worked

Introduction



© 2022 Synopsys, Inc. 4Synopsys Confidential Information

Testbench linting

Can you even enforce tabs-versus-spaces today?

Naming convention enforcement

Templates

Shared settings

Version control frontend

Common environment

What Do We Need During Code Development?



© 2022 Synopsys, Inc. 5Synopsys Confidential Information

Integrated Development 
Environment (IDE)

On-the-fly 
DUT checking

On-the-fly SVTB/UVM 
checking

• Avoid Testbench errors
– Testbench linting with elaboration and advanced analysis

– Find bugs in testbench and uncover RTL errors hidden by erroneous 
testbench code

• Prevent late-stage Design-under-Test (DUT) bugs and assure 
code quality

– Design rule checking as you type

– Assure high quality code by finding bugs early before it becomes risky to 
modify code

• Improve productivity
– Integrated Development Environment

– Coding acceleration, code viewing and navigation, integration with version 
control, bug tracking, task management

• Easily adopt coding styles and project methodology
– Verify legal syntax/semantics, naming conventions, unified project 

indentation and code formatting

– Custom rules for methodology enforcement 

Automated Code Checks
On-the-fly Rule Checking



© 2022 Synopsys, Inc. 6Synopsys Confidential Information

Testbench Checks

• Procedural code analysis

– Dead code detection

– Time-0 problems detections, such as out-of-
bounds accesses, ‘unique’ case violations, etc.

– ‘null’ class / virtual interface access 

– Dynamic casting violations

– Infinite loops & recursions

• UVM specific rules

– Non-compliant or incorrect code 

– Migration to UVM 1.2 or IEEE standard

• Method overrides & implementation 
inconsistencies or irregularities

• SVA checks 

• Class constraint checks 

• Data type mismatches 

– In method argument, including DPI

– In assignments 

– In expressions in any context

• Simulation performance rules 

• Custom methodology rules



© 2022 Synopsys, Inc. 7Synopsys Confidential Information

Design Checks

• Synthesis results

– Combinational loops, latches, ungated flops, etc.

– Clock & reset related rules

• Drives / loads violations 

– Per Index, leveraging time-0 information

– Undriven, unread

– Multiple drives, multiple driving procedures

– Interface & modport violations

• Procedural code analysis

– Dead code detection

– Time-0 problems detections, such as out-of-
bounds accesses, ‘unique’ case violations, etc.

• Width mismatches and other data type 
mismatches

– Parameterized information 

• Simulation performance rules



© 2022 Synopsys, Inc. 8Synopsys Confidential Information

Euclide

• Powerful EDA Engine

• Engine Differentiation: 
– High performance

– Resilient and recoverable

– Robust feedback even on incomplete code or code with 
errors 

– Incremental and interactive

– Enable live feedback and support for IDE features 

• For more :

– Getting Started with Synopsys Euclide

Engine

P
rovid

e U
n

iq
ue

 
cap

ab
ilities 

S
u

pe
rio

r 
R

ob
u

stn
ess

Parser
•Highly incremental
•Resilient, recoverable 

Elaborator
•Incremental
•Enables detailed instance view 

Pseudo-Synthesis
•Applied on SVTB domain also
•Enables bit level information
•Clock/reset  inference, dead code 
analysis and more

Technology Highlights



Thank You


