
© Imperas Software, Ltd.

The Art and Science of Automating Verification
Checking

Simon Davidmann (simond@imperas.com)

04-Oct-2022

The Design and Verification Club
(Europe and India)

The Art and Science of Automating
Verification Checking

Abstract:

• As with many aspects of modern verification plans, the methodologies and techniques are
revised and improved over time to improve efficiency and quality

• Specifications are the reference for all the key requirements from communication
protocols, bus standards, and processor ISAs so these are the essential starting point

• Automation starts with the specifications and supports the development of generators for
coverage libraries, score boarding, event sequences, and test suites

• Using examples from actual projects, this talk highlights the latest software generators for
automating coverage tests

• Key Points:
• Specifications are the basis of functional verification
• Automating generators for coverage add efficiency and quality
• How to apply software techniques to generators for SystemVerilog

4-Oct-22(c) Imperas Software, Ltd.Page 2

There is never enough time

• Current electronic products need more verification and delivery timescales
are shrinking

• It is OK saying ‘we can use the infinite resources of the cloud’
• But… that assumes that all you need to do is run ‘stuff’

• Where does this ‘stuff’ come from…

• Well… you have to create it…

4-Oct-22(c) Imperas Software, Ltd.Page 3

What is needed in verification projects

• Create verification plans - that drive the goals of the verification project...

• Develop & validate reference models/predictors and configure them

• Create the scoreboards to record and compare seen behavior / functionality

• Write functional coverage to measure progress vs. verification plan

• Write test benches to run them

• Write & generate test programs to stimulate them

• And then you can just run the ‘stuff’…

4-Oct-22(c) Imperas Software, Ltd.Page 4

Example: RISC-V Processor DV

(c) Imperas Software, Ltd.Page 5

RISC-V
Core
RTL

(DUT)

Simulation
control

mem

RISC-V
Reference

Model

Scoreboard

Testbench

SystemVerilog

Pass/Fail
determination

Tr
ac

er

Configuration

Synchronization

Functional
coverage

Instruction
Stream Generator

Virtual
Peripherals

Directed Tests

Tests

in
te

rf
ac

es

VIPs

Verification plans
that drive the
project

4-Oct-22

Example: RISC-V Processor DV

• So all this ‘stuff’ needs creating/acquiring/configuring before you can really start with DV

(c) Imperas Software, Ltd.Page 6

RISC-V
Core
RTL

(DUT)

Simulation
control

mem

Testbench

SystemVerilog

Instruction
Stream Generator

Directed Tests

Tests

in
te

rf
ac

es

VIPs

Verification plans
that drive the
project

4-Oct-22

Virtual
Peripherals

Tr
ac

er

RISC-V
Reference

Model

Scoreboard

Pass/Fail
determination

Configuration

Synchronization

Functional
coverage

So where can automation help…

• Develop & validate reference models/predictors and configure them

• Create the scoreboards to record and compare seen behavior / functionality

• Write functional coverage to measure progress vs. verification plan

• Write test benches to run them

• Write & generate test programs to stimulate them

• And then you can just run the ‘stuff’…

4-Oct-22(c) Imperas Software, Ltd.Page 7

So where can automation help…

• Develop & validate reference models/predictors and configure them

• Create the scoreboards to record and compare seen behavior / functionality

• Write functional coverage to measure progress vs. verification plan

• Write test benches to run them

• Write & generate test programs to stimulate them

4-Oct-22(c) Imperas Software, Ltd.Page 8

Best to get access to silicon proven
(commercially) supported configurable
reference models designed for full integration
e.g. Imperas

This can be automated….

This can be automated….

This can be mainly automated….

Use standards & high level reusable VIPs and
this become easier

So where can automation help…

• Develop & validate reference models/predictors and configure them

• Create the scoreboards to record and compare seen behavior / functionality

• Write functional coverage to measure progress vs. verification plan

• Write test benches to run them

• Write & generate test programs to stimulate them

4-Oct-22(c) Imperas Software, Ltd.Page 9

Best to get access to silicon proven
(commercially) supported configurable
reference models designed for full integration
e.g. Imperas

This can be automated….

This can be automated….

This can be mainly automated….

Use standards & high level reusable VIPs and
this become easier

Automating the generation of the testbench
Functional Coverage measuring components

Agenda:

• SystemVerilog functional coverage overview
• Interfaces, content, tools

• Requirements on the testbench approach

• Requirements for RISC-V processor functional coverage

• Generation flow

• Examples in use

4-Oct-22(c) Imperas Software, Ltd.Page 10

Automating the generation of the testbench
Functional Coverage measuring components

Agenda:

• SystemVerilog functional coverage overview
• Interfaces, content, tools

• Requirements on the testbench approach

• Requirements for RISC-V processor functional coverage

• Generation flow

• Examples in use

4-Oct-22(c) Imperas Software, Ltd.Page 11

SystemVerilog functional coverage overview

• Coverpoints & covergroups in SystemVerilog source in testbench

• Connects via interfaces into core through ‘tracer’

• Core execution events trigger sampling of coverpoints to collect
data on state of core

• SystemVerilog simulator & tools from e.g. Cadence, Synopsys,
Siemens EDA, Metrics create coverage data files, collate, and then
provide coverage reports

(c) Imperas Software, Ltd.Page 12

RISC-V
Core
RTL

(DUT)

Testbench

Tr
ac

er Functional
coverage

in
te

rf
ac

es

VIPs

4-Oct-22

SystemVerilog

Coverage data files
& reports

e.g. SystemVerilog covergroups/coverpoints
e.g. Cadence Xcelium IMC coverage report GUI

Automating the generation of the testbench
Functional Coverage measuring components

Agenda:

• SystemVerilog functional coverage overview

• Requirements on the testbench approach

• Requirements for RISC-V processor functional coverage

• Generation flow

• Examples in use

4-Oct-22(c) Imperas Software, Ltd.Page 13

Requirements on the testbench
approach

• Functional coverage only tells you what was seen in the test bench and DUT

• It does not tell you that the DUT actually did what you expected…

• That is what the reference model, scoreboards, comparators, and other VIPs do

• For the DV to be good (and the coverage to be meaningful) – the test bench has to include appropriate
components

• Currently there are several test bench approaches
• Self test
• File compare (e.g. signature) (post-simulation)
• Log trace compare (post-simulation)
• Lock-step-compare (co-simulation)

• Synchronous events
• Asynchronous events

• It is important to use an appropriate test bench for the level of verification required
• For example, … if you need to test async behavior you need async-lock-step-compare (co-sim) approach…

4-Oct-22(c) Imperas Software, Ltd.Page 14

Automating the generation of the testbench
Functional Coverage measuring components

Agenda:

• SystemVerilog functional coverage overview

• Requirements on the testbench approach

• Requirements for RISC-V processor functional coverage

• Generation flow

• Examples in use

4-Oct-22(c) Imperas Software, Ltd.Page 15

Requirements for RISC-V processor
functional coverage
• Basic ISA

• Instructions and un-privilege execution
• Standard basic processor state and privilege modes

• Customer core design & micro-architectural features
• Privilege and implementation choices: CSRs, Interrupts, Debug block, …
• Interrupt events, asynchronous behaviors and debug modes, …
• Pipeline, multi-issue, multi-hart, Out-of-Order, …

• Quantities…
• There are many different instructions in the RV64 extensions:

• Integer: 56, Maths: 13, Compressed: 30, FP-Single: 30, FP-Double: 32

• Vector: 356, Bitmanip: 47 Crypto-scalar: 85

• P-DSP: 318

• For RV64 that is 967 instructions…

• And for each instruction you will need to write SystemVerilog covergroups and coverpoints…
• Maybe 10-40 lines of SystemVerilog for each instruction…

 10,000-40,000 lines of SystemVerilog code to be written… (and be correct and working…)
• And that is just for the basic un-privilege mode ISA…

4-Oct-22(c) Imperas Software, Ltd.Page 16

Automating the generation of the testbench
Functional Coverage measuring components

Agenda:

• SystemVerilog functional coverage overview

• Requirements on the testbench approach

• Requirements for RISC-V processor ISA functional coverage

• Generation flow

• Examples in use

4-Oct-22(c) Imperas Software, Ltd.Page 17

Generation flow for creating functional
coverage source

4-Oct-22(c) Imperas Software, Ltd.Page 18

In
te

rf
ac

e

Functions to convert
tracer data to

Functional Coverage
structures

Functional Coverage
sampling

clk

R
V

3
2

I

R
V

3
2

M

R
V

3
2

C

R
V

3
2

F

R
V

3
2

E

R
V

3
2

D

R
V

3
2

B

R
V

3
2

K
s

R
V

3
2

V

R
V

3
2

P

R
V

3
2

P
M

P

R
V

6
4

I

R
V

6
4

M

R
V

6
4

C

R
V

6
4

F

R
V

6
4

E

R
V

6
4

D

R
V

6
4

B

R
V

6
4

K
s

R
V

6
4

V

R
V

6
4

P

R
V

6
4

P
M

P

R
V

3
2

C
SR

R
V

6
4

C
SR

…

…

R
V

3
2

A
R

V
6

4
A

Ex
ce

p
ti

o
n

s

In
te

rr
u

p
ts

D
eb

u
g

Ex
ce

p
ti

o
n

s

In
te

rr
u

p
ts

D
eb

u
g

U
se

r
d

ef
in

ed
U

se
r

d
ef

in
ed

M
M

U
M

M
U

H
yp

er
vi

so
r

H
yp

er
vi

so
r

Hand coded
SystemVerilog

RVFCgen
(Imperas internal tool)

…

Generated SystemVerilog source

RISC-V
privilege and un-privilege

ISA machine readable
definition

(Imperas internal)

Configuration:
xlen, csr, csrFields,

compliance, DV
extensions, options, …

RISC-V
Core
RTL

(DUT)

Tr
ac

er

RISC-V Machine readable definitions

• There are several categories of items that need considering
• ISA extensions and groups with version revisions
• Instructions with format and coverage definitions
• CPU state / Control and Status Registers (CSRs) with field and coverage definitions
• Interrupt and Debug modes and coverage definitions

• Configurability of the items in these categories
• Context awareness of dynamic settings of these categories
• Specification capability of ‘user choice’, ‘implementation defined’

4-Oct-22(c) Imperas Software, Ltd.Page 19

RISC-V
privilege and un-privilege

machine readable
definition

(Imperas internal)

Automating the generation of the testbench
Functional Coverage measuring components

Agenda:

• SystemVerilog functional coverage overview

• Requirements on the testbench approach

• Requirements for RISC-V processor ISA functional coverage

• Generation flow

• Examples in use

4-Oct-22(c) Imperas Software, Ltd.Page 20

Examples in use

• Internally developed instruction coverage for RISC-V Vector Test Suite project (2018-2019)
• Contract to develop RISC-V Vector Test Suite – we needed to know its coverage

• OpenHW CV32E40P – used source output of first gen of Imperas RVFCgen – RV32I (2020)

• Evolved as part of RISC-V Architecture Compliance group and targeted their coverage requirements
• Included with all Imperas simulators as binary (not SystemVerilog)

• riscvOVPsimPlus, … -> …, ImperasDV

• Provides coverage of all ratified ISA extensions

• 2022 – 2nd gen
• Results released as SystemVerilog source in Imperas products for first few ISA subsets
• Released as open source
• Interface to core tracer now utilizes open standard RVVI-TRACE interface

• https://github.com/riscv-verification/RVVI

• Restructured as UVM class libraries
• So can be user extended in maintainable way

• New OpenHW VTG ARVM-FunctionalCoverage project
• Focusing on adding DV requirements

4-Oct-22(c) Imperas Software, Ltd.Page 21

https://github.com/riscv-verification/RVVI

Automating the generation of the testbench
Functional Coverage measuring components

Agenda:

• SystemVerilog functional coverage overview

• Requirements on the testbench approach

• Requirements for RISC-V processor ISA functional coverage

• Generation flow

• Examples in use

• Summary

4-Oct-22(c) Imperas Software, Ltd.Page 22

Automating the generation of the testbench
Functional Coverage measuring components

Summary:

• Generation of verification components can produce significant benefits to DV
teams

• Requires machine readable formats as input to generators

• Project in OpenHW VTG is driving requirements for RISC-V processors

• Imperas has created generation technology and results have been in use in 3
generations since 2020 with OpenHW cores & commercial users

• Imperas roadmap to make more generated SystemVerilog Functional
Coverage source available in 2022

4-Oct-22(c) Imperas Software, Ltd.Page 23

Thank you

More information:

• info@imperas.com

• www.imperas.com

• RISC-V Verification Interface (RVVI)
• https://github.com/riscv-verification/RVVI

• OpenHW Group
• https://www.openhwgroup.org

4-Oct-22(c) Imperas Software, Ltd.Page 24

mailto:info@imperas.com
http://www.imperas.com/
https://github.com/riscv-verification/RVVI
https://www.openhwgroup.org/

