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The Art and Science of Automating 
Verification Checking

Abstract:

• As with many aspects of modern verification plans, the methodologies and techniques are 
revised and improved over time to improve efficiency and quality

• Specifications are the reference for all the key requirements from communication 
protocols, bus standards, and processor ISAs so these are the essential starting point

• Automation starts with the specifications and supports the development of generators for 
coverage libraries, score boarding, event sequences, and test suites

• Using examples from actual projects, this talk highlights the latest software generators for 
automating coverage tests

• Key Points:
• Specifications are the basis of functional verification
• Automating generators for coverage add efficiency and quality
• How to apply software techniques to generators for SystemVerilog
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There is never enough time

• Current electronic products need more verification and delivery timescales 
are shrinking

• It is OK saying ‘we can use the infinite resources of the cloud’
• But… that assumes that all you need to do is run ‘stuff’

• Where does this ‘stuff’ come from…

• Well… you have to create it…
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What is needed in verification projects

• Create verification plans - that drive the goals of the verification project...

• Develop & validate reference models/predictors and configure them

• Create the scoreboards to record and compare seen behavior / functionality

• Write functional coverage to measure progress vs. verification plan

• Write test benches to run them

• Write & generate test programs to stimulate them

• And then you can just run the ‘stuff’…
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Example: RISC-V Processor DV
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Example: RISC-V Processor DV

• So all this ‘stuff’ needs creating/acquiring/configuring before you can really start with DV
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So where can automation help…

• Develop & validate reference models/predictors and configure them

• Create the scoreboards to record and compare seen behavior / functionality

• Write functional coverage to measure progress vs. verification plan

• Write test benches to run them

• Write & generate test programs to stimulate them

• And then you can just run the ‘stuff’…
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reference models designed for full integration 
e.g. Imperas

This can be automated….

This can be automated….
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this become easier
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Automating the generation of the testbench 
Functional Coverage measuring components

Agenda:

• SystemVerilog functional coverage overview
• Interfaces, content, tools

• Requirements on the testbench approach

• Requirements for RISC-V processor functional coverage

• Generation flow

• Examples in use
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SystemVerilog functional coverage overview

• Coverpoints  & covergroups in SystemVerilog source in testbench

• Connects via interfaces into core through ‘tracer’

• Core execution events trigger sampling of coverpoints to collect 
data on state of core

• SystemVerilog simulator & tools from e.g. Cadence, Synopsys, 
Siemens EDA, Metrics create coverage data files, collate, and then 
provide coverage reports

(c) Imperas Software, Ltd.Page 12

RISC-V
Core
RTL

(DUT)

Testbench

Tr
ac

er Functional 
coverage

in
te

rf
ac

es

VIPs

4-Oct-22

SystemVerilog

Coverage data files
& reports

e.g. SystemVerilog covergroups/coverpoints
e.g. Cadence Xcelium IMC coverage report GUI



Automating the generation of the testbench 
Functional Coverage measuring components

Agenda:

• SystemVerilog functional coverage overview

• Requirements on the testbench approach

• Requirements for RISC-V processor functional coverage

• Generation flow

• Examples in use

4-Oct-22(c) Imperas Software, Ltd.Page 13



Requirements on the testbench 
approach

• Functional coverage only tells you what was seen in the test bench and DUT

• It does not tell you that the DUT actually did what you expected…

• That is what the reference model, scoreboards, comparators, and other VIPs do

• For the DV to be good (and the coverage to be meaningful) – the test bench has to include appropriate 
components

• Currently there are several test bench approaches
• Self test
• File compare (e.g. signature) (post-simulation)
• Log trace compare (post-simulation)
• Lock-step-compare (co-simulation)

• Synchronous events
• Asynchronous events

• It is important to use an appropriate test bench for the level of verification required
• For example, … if you need to test async behavior you need async-lock-step-compare (co-sim) approach…
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Requirements for RISC-V processor 
functional coverage
• Basic ISA

• Instructions and un-privilege execution
• Standard basic processor state and privilege modes

• Customer core design & micro-architectural features
• Privilege and implementation choices: CSRs, Interrupts, Debug block, …
• Interrupt events, asynchronous behaviors and debug modes, …
• Pipeline, multi-issue, multi-hart, Out-of-Order, …

• Quantities…
• There are many different instructions in the RV64 extensions:

• Integer: 56,      Maths: 13,       Compressed: 30,    FP-Single: 30,    FP-Double: 32

• Vector: 356,     Bitmanip: 47   Crypto-scalar: 85

• P-DSP: 318

• For RV64 that is 967 instructions…

• And for each instruction you will need to write SystemVerilog covergroups and coverpoints…
• Maybe 10-40 lines of SystemVerilog for each instruction…

 10,000-40,000 lines of SystemVerilog code to be written… (and be correct and working…)
• And that is just for the basic un-privilege mode ISA…
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Automating the generation of the testbench 
Functional Coverage measuring components
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Generation flow for creating functional 
coverage source
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RISC-V Machine readable definitions

• There are several categories of items that need considering
• ISA extensions and groups with version revisions
• Instructions with format and coverage definitions
• CPU state / Control and Status Registers (CSRs)  with field and coverage definitions
• Interrupt and Debug modes and coverage definitions

• Configurability of the items in these categories
• Context awareness of dynamic settings of these categories
• Specification capability of ‘user choice’, ‘implementation defined’
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Examples in use

• Internally developed instruction coverage for RISC-V Vector Test Suite project (2018-2019)
• Contract to develop RISC-V Vector Test Suite – we needed to know its coverage

• OpenHW CV32E40P – used source output of first gen of Imperas RVFCgen – RV32I (2020)

• Evolved as part of RISC-V Architecture Compliance group and targeted their coverage requirements
• Included with all Imperas simulators as binary (not SystemVerilog)

• riscvOVPsimPlus, … -> …, ImperasDV

• Provides coverage of all ratified ISA extensions

• 2022 – 2nd gen
• Results released as SystemVerilog source in Imperas products for first few ISA subsets
• Released as open source
• Interface to core tracer now utilizes open standard RVVI-TRACE interface

• https://github.com/riscv-verification/RVVI

• Restructured as UVM class libraries
• So can be user extended in maintainable way

• New OpenHW VTG ARVM-FunctionalCoverage project
• Focusing on adding DV requirements
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Automating the generation of the testbench 
Functional Coverage measuring components
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Automating the generation of the testbench 
Functional Coverage measuring components

Summary:

• Generation of verification components can produce significant benefits to DV 
teams

• Requires machine readable formats as input to generators

• Project in OpenHW VTG is driving requirements for RISC-V processors

• Imperas has created generation technology and results have been in use in 3 
generations since 2020 with OpenHW cores & commercial users

• Imperas roadmap to make more generated SystemVerilog Functional 
Coverage source available in 2022
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Thank you

More information:

• info@imperas.com

• www.imperas.com

• RISC-V Verification Interface (RVVI)
• https://github.com/riscv-verification/RVVI

• OpenHW Group
• https://www.openhwgroup.org
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