
© InCore Semiconductors 2022 DVCLUB Europe, November 2022

RISC-V Verif Generators

Neel Gala
InCore Semiconductors

A Configurable ISA warrants a Configurable Verification Environment

© InCore Semiconductors 2022 DVCLUB Europe, November 2022

Configurable ISA Configurable Verification

2

Open, Flexible and Modular ISAs like RISC-V
along with its rich and diverse ecosystem are
key to realizing the next generation solutions

Configurable ISA

Configurable Verification

As designs become more configurable and fragmented,
the number of possible instances to verify grows
exponentially - making verification a bottleneck.

This warrants a verification methodology which includes a
scalable test-harness, configurable and parameterized

tests with a high level of quality assurance. Automating
test-generation is the key here.

Configurable Cores

The growth and rapid acceptance of High-Level HDLs like BSV,
Chisel, Clash, Spinal HDL,etc. has enabled creation of

extremely configurable, modular and scalable
micro-architectures.

Thus, in the new world of RISC-V, Configurable Core Generators
(like Chromite, Rocket, etc) are becoming the new norm.

© InCore Semiconductors 2022 DVCLUB Europe, November 2022

Integration
Framework

Test
Coverage

Test
Generation

3

RISC-V Verification Generators

Adaptable Test
Harness

© InCore Semiconductors 2022 DVCLUB Europe, November 2022
4

An Adaptable Test Harness

Assembly
Tests

GCC, LLVM, Custom

● Needs to mimic DUT as much as possible
● Should be configurable
○ Either at build-time (SAIL) OR via CLI (Spike)
○ A common spec format like riscv-config makes

it easy to capture ISA and platform choices.
Using riscv-config to configure the model is a
future-ready scalable approach (check SAIL)

● Should be proven against an accepted model
● Sample Reference Models:

○ SAIL, Spike, Whisper, etc.

CONFIG

The goal here is to check if the test
had the same architectural state
changes on the DUT and the reference
model upon execution. The
architectural changes thus can be
compared in the following ways

● Log Based
● Step-n-Compare

© InCore Semiconductors 2022 DVCLUB Europe, November 2022
5

An Adaptable Test Harness
Comparison Modes

LOGs / SIGNATURE BASED

● Logs capture the state changes at the end of each instruction or
events (traps, etc)

● Signatures capture a specific memory region and dump it out at
the end of the test

● Pros:
○ Easy to set up - requires minimal scripts
○ Fast simulation speeds

● Cons:
○ Log sizes can explode quickly
○ Difficult to debug failures
○ Log formats need to match
○ Certain tests which depend on uncore (counters, timers, etc)

cannot be used in this mode

STEP-N-COMPARE BASED

● Synchronize the DUT and the REF to step through one single
instruction or a single event and then compare the relevant
architectural states of both

● Pros:
○ Easier to debug failures
○ Event synchronization for uncore possible
○ Delay sensitive tests can be used

● Cons:
○ Slow simulation speeds
○ Requires REF model to be wrapped in an API so that state

can be synchronized based on DUT events
○ Requires a more complex setup
○ Language can become restrictive

© InCore Semiconductors 2022 DVCLUB Europe, November 2022
6

An Adaptable Test Harness
Step-n-Compare with CoCoTb and Spike

CoCoTb
↪ Library for digital logic verification in Python
↪ Coroutine co-simulation testbench
↪ Python interface to RTL simulators
↪ User-friendly alternative to Verilog/VHDL
↪ Simulator Agnostic Test Env

Spike API
● Build Spike as a shareable object binary
● Create a C API:

○ To initialize and kill spike
○ To read csrs, regfiles, memory, etc
○ To write csrs, regfiles, memory, etc

● Use SWIG to import C API in python world of
CoCoTb

● Spike itself might require a few changes - like
disabling its own clint, setting of xeip, etc.

Sync Coroutines
● UnCore on DUT includes: Memory,

Debug, CLINT, PLIC, etc.
● Synchronization for:

○ To step spike once only when DUT
has committed an instruction

○ Events like interrupts from
DUT-uncore to be communicated to
spike

○ Writes to CSRs with complex WARL
behaviors need to be communicated
to spike.

© InCore Semiconductors 2022 DVCLUB Europe, November 2022

Test Generation

7

As the features of the ISA and the micro-Arch increase, the tests required to
verify those features also grow exponentially.

Key is to focus on Automated Test Generation as much as possible.

ISA Compliance Tests

These tests focus on checking if the
design has interpreted and implemented

the spec correctly.

These tests primarily focus on positive
testing and corner cases derived from the

ISA spec only.

Can be treated as a solid smoke-suite for
initial days of verification

Random Tests

These tests focus on generating a
sequence of random instructions. Aim to
improve initial confidence in the design

very quickly.

The sequences and randomness is
typically controlled by the user and thus

capable of covering a wide variety of
corner cases from ISA and micro-Arch with

minimal effort.

Micro-Arch Tests

Primary focus here is to test the micro
architectural features of the core such as
Caches, Branch Predictors, Bypass Logic,

etc.

These contribute heavily to the functional
coverage closure.

© InCore Semiconductors 2022 DVCLUB Europe, November 2022

ISA Compliance Tests
RISC-V CTG - A python based coverage driven
test-generator.

- Coverpoints are defined as constraints on the
user-visible architectural state

- Coverpoints are defined in high-level python
eval strings

- Generated Tests are compliant with
Compliance Test Format Spec.

- Features:
- Supports are ratified unpriv extensions
- Supports various sequence generation
- Multi-threaded

riscv-ctg.readthedocs.io

8

Test Generation
Random Tests

Various stress test Generators Available:

- AAPG:
- Python based
- Uses a config file to define pseudo

random constraints
- Supports all ratified extensions
- Several micro-arch features like cache

thrashing, raw depth, recursion, etc
- Allows one to define a custom snippet to

repeat randomly
- Custom trap handler support

- RISC-V Torture:
- Scala based
- Doesn’t support rv32 off-the-shelf. Needs

defining sequences
- CSMITH (Random C program Generator)
- Test-Float (Random FP Generator)

AAPG: gitlab.com/shaktiproject/tools/aapg
TORTURE: github.com/ucb-bar/riscv-torture

TEST-FLOAT:github.com/ucb-bar/berkeley-testfloat-3

Micro-Arch Tests
UATG - A plugin based python tool to build and
maintain parameterized ASM tests focusing on
micro-architectural features of a core.

Each Python plugin acts as a separate
test-generator - while UATG fills in the commons
and glue logic

The parameters can come from riscv-config OR a
custom micro-arch yaml - allowing the tests to be
parameterized at a much higher level of
abstraction.

uatg.readthedocs.io

CHALLENGE : Need to standardize on common collaterals for easier use.

© InCore Semiconductors 2022 DVCLUB Europe, November 2022

Test Coverage

ISA Coverage - Intent is to define coverpoints based on the ISA defined architectural states:
registers, memory, csrs, instruction combinations, etc.

RISCV-ISAC: Given a set of coverpoints and an execution trace of a test run on a model (SAIL),
ISAC can provide a report indicating in detail which of those coverpoints were covered by the
test/application - thereby providing a ISA quality of the test.

✘ Supports multiple models - SAIL, Spike
✘ Support all ratified extensions
✘ Provides a data propagation report for each test

Link : riscv-isac.readthedocs.io

9

© InCore Semiconductors 2022 DVCLUB Europe, November 2022

Test Coverage

Functional Coverage: As we shift from static cores to core-generators Functional Coverage
becomes a major challenge:

✘ Due to abstraction of HLDHLs the signals names at RTL can change quickly
✘ Certain signals/coverpoints/properties exist only under certain

configurations of ISA and micro-architectural features

10

Link : gitlab.com/shaktiproject/core-py-verif/-/tree/dev

© InCore Semiconductors 2022 DVCLUB Europe, November 2022

RIVER-CORE : An umbrella framework

✘ Scalable and Simple
✘ Isolates Generation, SIMs and Models
✘ Standardized interfaces via common APIs
✘ License Free - Can be Parallelized

11

Link : river-core.readthedocs.io/en

© InCore Semiconductors 2022 DVCLUB Europe, November 2022

THANKS
Contact info:

Neel Gala (CTO) : neelgala@incoresemi.com

12

